periodicity morphism - significado y definición. Qué es periodicity morphism
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es periodicity morphism - definición

THEOREM ON HOMOTOPY GROUPS
Bott periodicity; Bott element; Bott's periodicity theorem

Morphism of schemes         
RINGED SPACE MORPHISM BETWEEN SCHEMES; LOCALLY A COMMUTATIVE RING HOMOMORPHISM BETWEEN COORDINATE RINGS
Scheme morphism; Graph morphism (algebraic geometry)
In algebraic geometry, a morphism of schemes generalizes a morphism of algebraic varieties just as a scheme generalizes an algebraic variety. It is, by definition, a morphism in the category of schemes.
Periodicity         
WIKIMEDIA DISAMBIGUATION PAGE
Periodic; Periodicity (disambiguation); Periodic (disambiguation); Periodicities
·noun The quality or state of being periodical, or regularly recurrent; as, the periodicity in the vital phenomena of plants.
periodic         
WIKIMEDIA DISAMBIGUATION PAGE
Periodic; Periodicity (disambiguation); Periodic (disambiguation); Periodicities
Periodic events or situations happen occasionally, at fairly regular intervals.
...periodic bouts of illness.
= periodical
ADJ: usu ADJ n

Wikipedia

Bott periodicity theorem

In mathematics, the Bott periodicity theorem describes a periodicity in the homotopy groups of classical groups, discovered by Raoul Bott (1957, 1959), which proved to be of foundational significance for much further research, in particular in K-theory of stable complex vector bundles, as well as the stable homotopy groups of spheres. Bott periodicity can be formulated in numerous ways, with the periodicity in question always appearing as a period-2 phenomenon, with respect to dimension, for the theory associated to the unitary group. See for example topological K-theory.

There are corresponding period-8 phenomena for the matching theories, (real) KO-theory and (quaternionic) KSp-theory, associated to the real orthogonal group and the quaternionic symplectic group, respectively. The J-homomorphism is a homomorphism from the homotopy groups of orthogonal groups to stable homotopy groups of spheres, which causes the period 8 Bott periodicity to be visible in the stable homotopy groups of spheres.